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This paper is dedicated to Professor Joe Paldus – a GIANT in both scientific and human scales – with
the confidence that Brian Wybourne would have repeated these words.

A theoretical model of magnetic dipole transitions in crystals doped by the lanthanide ions
is based on the fourth-order perturbation theory applied for the Hamiltonian in which two
perturbing mechanisms are taken into account. Namely, the impact due to the crystal field
potential and also spin–orbit interaction operator is included in the transition amplitude.
The analysis is performed in the language of Racah algebra applied for the formulation of
the effective operators expressed in terms of unit double tensor operators. The radial
integrals of the terms contributing at the fourth order are defined within the perturbed
function approach, due to which their values are evaluated for the complete radial basis sets
of one-electron states of given symmetry. The numerical analysis performed for the Eu3+ ion
provides the information on the relative importance of various effective operators and al-
lows one to establish a hierarchy of important terms contributing to the transition ampli-
tude. The results of the analysis lead also to the verification of possible importance of mag-
netic dipole transitions in the description of 0 ↔ 0 and 0 ↔ 1 electric dipole transitions via
the so-called borrowing mechanism introduced by Wybourne.
Keywords: Hamiltonian; Magnetic dipoles; Lanthanides; Spin–orbit interaction; Racah alge-
bra; Borrowing mechanism; Double perturbation theory.

The so-called hypersensitive transitions in lanthanide ions are not the only
ones for which a theoretical model of their description is not yet estab-
lished. The second class of transitions that are at the center of attention are
0 ↔ 0 and 0 ↔ 1 that are observed for Eu3+ and Sm2+ in various hosts. Al-
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though many papers have already been devoted to their description, still in
the literature of the field there is a discussion performed in light of various
physical mechanisms that might be important in their understanding and
reproduction. There are at least two reasons for further investigations that
would solve the puzzle definitively and without doubt. The outstanding ap-
plications of these transitions as spectroscopic tools for the diagnosis of
cancerous tissues in various organs inspire this basic research. At the same
time, from a purely scientific point of view, the fact that still their origins
are not fully known and their properties are not completely understood, de-
fines a challenge for all involved in the field.

In 1997 a theoretical analysis based on the third-order model was per-
formed in the case of the transitions observed in Eu3+ in a host with C2v
symmetry1. In this approach, in addition to the perturbing influence of the
crystal field potential, also the impact due to the electron correlation effects
was taken into account. In fact, the inclusion of electron correlation (repre-
sented by scalar operators) does not change the selection rules for the non-
vanishing transition amplitude. The two-particle nature of the Coulomb in-
teraction leads to new two-particle effective operators that contribute to the
transition amplitude of these unusual transitions. In the case of the transi-
tions allowed by the selection rules of the standard Judd–Ofelt theory, the
major part of the transition amplitude is due to one-particle effective opera-
tors, while the two-particle ones are relatively negligible. However, when
the single particle part of the parametrization scheme is vanishing, the only
nonzero contributions to the transition amplitude are determined by two-
particle effective operators. This was the concept applied for the calcula-
tions in the case of the unusual transitions observed in Eu3+ ion in C2v sym-
metry. The results of ab initio calculations are presented in detail in ref.1 to-
gether with the basic definitions of the approach. An extensive and very
precise discussion of these numerical results performed in the context of
observations, and also on the background of the impact which is due to
other physical mechanisms, is presented in a very elegant and complete
way by Kushida and Tanaka. Their contribution to the understanding of
these transitions is outstanding2–9, however, at the same time, other publi-
cations like refs10,11, and references in all the papers cited here, should not
be overlooked in the discussion.

It is common practice, when analyzing these unusual transitions, to ex-
pect that their amplitudes are enhanced by the borrowing mechanism sug-
gested by Wybourne. It should be realized however, that there is a wide
class of distinct physical interactions that might provide the contribution
to the transition amplitude and realize the borrowing intensity mechanism.
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It is possible to regard this mechanism as the borrowing of the intensity
from the transitions or interactions via the perturbing operators among the
excited states of the ground configuration of lanthanide ion. This is the
most common practical interpretation of this mechanism. It is also possible
to reinforce the transition amplitude by the contributions that result from
the intershell interactions via certain operators (like crystal field potential,
electron correlation operator and spin–orbit interaction operator). This is
the interaction that includes the perturbing influence of all excited config-
urations of appropriate parity. In this particular case, the forced closure pro-
cedure guarantees that all the energy states of the excited configurations
are taken into account (summation over the complete set of energy states).
At the same time, in order to perform ab initio calculations, one has to in-
clude all the excitations from the 4fN shell to one-electron states of l′ sym-
metry for all n′, including the states from the continuum. This is the re-
quirement of taking into account the complete radial basis sets of one-
electron functions, and it is satisfied if the perturbed function approach is
applied.

The borrowing mechanism of Wybourne might also be understood in the
way as discussed recently by him in a series of lectures that were devoted to
magnetic dipole transitions. Namely, it is expected that the amplitude of
the unusual transitions is gaining the value from the magnetic dipole tran-
sition in the following sense,

S(7F0 ↔ 5D0) = Sed(0 ↔ 0) + Smd(0 ↔ 0)

where Sed is the electric dipole contribution and Smd denotes the term due
to the magnetic dipole origin. This particular borrowing mechanism is veri-
fied in the present paper. In order to have a deeper insight into the prob-
lem of the theoretical description of the magnetic dipole transitions, a nu-
merical analysis is performed here also for the transition 0 ↔ 1. Thus, the
present analysis is a continuation of a still vivid discussion devoted to the
unusual transitions, and might be treated as a new addition to the knowl-
edge presented previously in ref.1 and in the series of papers by Kushida
and his collaborators2–9.

THEORETICAL MODEL

In the previous paper devoted to the magnetic dipole transitions between
the energy levels of rare earth ions doped in crystals12, a detailed theoretical
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model of their description was introduced. The approach was based on dou-
ble perturbation theory applied for the following Hamiltonian

H H V PV Q QV P QV Q= + + + +0 λ µCF so so so( ) (1)

where the operators P projects onto the space associated with the configura-
tion 4f6 of Eu ion and Q is its orthogonal complement. The zeroth-order
Hamiltonian in Eq. (1) describes the free ion at the level of Hartree–Fock
model implemented by the intrashell spin–orbit interactions

H h PV P0 = +HF so . (2)

The inclusion of the intrashell spin–orbit interaction into the unperturbed
Hamiltonian H0 implies the intermediate coupling scheme of the zeroth-
order functions ψ.

In the present analysis the amplitude of magnetic dipole transition is de-
fined up to the fourth order and it is expressed in terms of effective opera-
tors that represent the perturbing influence of crystal field potential and
spin–orbit interaction.

The perturbation expansion applied for initial Ψi and final Ψf states of a
transition in a matrix element of magnetic dipole operator produces the
following terms of various orders (see ref.12)

– first-order contributions to the magnetic dipole transition between the
states ψ and ψ′ of zeroth order,

〈 + ′〉 ≡ ′4 46 1 6f fs q MDψ ψ ψ ψ|( ) | ( , )( )L g S D ; (3)

– second-order contributions caused by the crystal field potential, and as-
sociated with λ

Γλ ψ ψ ψ ψ= ′ + ′D x V x V x D xMD CF CF MD( , ) ( , ) ( , ) ( , ) (4)

where ψ, ψ′ and x denote states of the ground configuration 4f6, and the
summation is performed over all intermediate states x;

– intrashell third-order contributions associated with λµ

Γλµ ψ ψ ψ ψ= ′ + ′D x F x F x D xMD MD( , ) ( , ) ( , ) ( , )2 2 (5)

where the effective operator F2 represents the intershell interactions via
PVsoQVCFP, and its tensorial form is presented in Eq. (A1) of Appendix;
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– fourth-order contributions associated with λ2µ, where the crystal field
potential occurs twice in the perturbing expressions together with Vso,
namely

Γ
λ µ
1

2 = ′ +D x V x y F y V x F x y DMD CF CF MD( , ) ( , ) ( , ) ( , ) ( , ) (ψ ψ ψ2 2 y , )′ψ (6)

Γ
λ µ2
2

2 2= ′ +D x F x y V y F x V x y DMD CF CF MD( , ) ( , ) ( , ) ( , ) ( , ) (ψ ψ ψ y , )′ψ (7)

Γ
λ µ
3

2 = ′ +F x D x y V y V x D x y F2 2( , ) ( , ) ( , ) ( , ) ( , ) (ψ ψ ψMD CF CF MD y , )′ψ (8)

Γ
λ µ2
4

4 4= ′ + ′D x F x F x D xMD MD( , ) ( , ) ( , ) ( , )ψ ψ ψ ψ (9)

Γ
λ µ2
5

5 5= ′ + ′D x F x F x D xMD MD( , ) ( , ) ( , ) ( , ) .ψ ψ ψ ψ (10)

The new effective operators F4 and F5 above correspond to the intershell in-
teractions PVCFQVsoQVCFP and PVCFQVCFQVsoP, respectively. These two se-
quences of perturbing operators lead to two different effective operators
that are defined by Eqs (A2) and (A3) of Appendix.

It is seen from the structure of Eqs (6)–(10) that all the fourth-order con-
tributions are caused by a double action of the crystal field potential, and
therefore they are multiplied by the product of two structural parameters of
appropriate orders (see effective operators in ref.12). It should also be
pointed out that in the derivation of the tensorial structure of all effective
operators, the radial terms are evaluated separately. This is the reason that
instead of standard crystal field parameters Ap

t , here the structural parame-
ters are applied. The relation between them is the following (see the defini-
tion of the crystal field potential in Eq. (3) of ref.12),

A B rp
t

p
t t= 〈 〉 4 f .

The symbolic product of the operators in the case of all contributions
above denotes in fact the product of their matrix elements including the
energy denominator, for example

D x V x D x x V E E
x

xMD CF MD CF( , ) ( , ) | | | | /( ) .ψ ψ ψ ψ ψ′ = 〈 〉 〈 ′〉 −∑ ′ (11)

In all matrix elements that determine the transition amplitude only the
energy states of the ground configuration are involved. In this sense the op-
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erators in Eqs (6)–(10) are effective as acting between the states of 4fN con-
figuration. For the clarity of presentation, the energy denominators that are
specific for all the perturbing expressions are omitted in the presented ex-
pressions.

The crystal structure independent analysis of the tensorial structure of all
the operators contributing to the magnetic dipole transition amplitude has
been performed in detail previously12. The analysis presented there was
based on the results of ab initio calculations since the angular factors and
the radial integrals of distinct contribution, were evaluated in an exact way.
Indeed, the radial integrals as expressed in terms of the perturbed functions
were evaluated for the complete radial basis sets of one-electron functions
of a given symmetry13.

In order to find out the importance of various contributions to the so-
called “borrowing mechanisms” introduced by Wybourne, and to find the
hierarchy of the physical mechanisms that are represented by various effec-
tive operators, numerical calculation has been performed for the Eu3+ ion in
LaCl3 of C3h symmetry.

NUMERICAL ANALYSIS

The magnetic dipole transitions occur between the energy states of given
configuration. As a consequence, every higher-order contribution to their
amplitude has the form of product of matrix elements DMD(ψ,x)O(x,ψ′),
where ψ, ψ′ and x in the case of Eu3+ ion are the energy states of 4f6 (see
contributions (4)–(10)). The mechanisms represented in general by O are re-
sponsible for the so-called borrowing of intensity. The importance of these
mechanisms contributing to the amplitude of 0 ↔ 0 and 1 ↔ 0 transitions
is established in this work. The comparison of various contributions is per-
formed up to the fourth order as indicated above.

The radial integrals of all effective operators contributing to the transi-
tion amplitude were evaluated within the perturbed function approach,
and their values are collected in Tables I and II of ref.12 The angular factors
of new effective operators F2, F4 and F5 were also analyzed previously12.
The conclusions derived there were based on the analysis of the results of
ab initio quality, since no adjusted parameters were taken into account in
the numerical procedure. Only in the present investigations are the matrix
elements of double tensor operators evaluated with the adjusted coeffi-
cients of the wave functions defined within the intermediate coupling
scheme. In addition, for the final analysis of various contributions also the
semi-empirical values of the structural parameters are applied here.
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0 ↔ 0 Transition

Due to the selection rules the only possible non-vanishing contributions to
the 0 ↔ 0 transition amplitude are the fourth-order terms that consist of
the product of three distinct matrix elements Γ

λ µ2
1 , Γ

λ µ2
2 , Γ

λ µ2
3 as defined in

Eqs (6)–(8), for example

Γ
λ µ
1

2 ([ ] [ ] ) ([ ] , ) ( , ) ( ,[ ] )5
0

7
0

7
0 2

5
0D F F DMD CF→ = D x V x y F y +

+ V x F x y D yCF MDF D([ ] , ) ( , ) ( ,[ ] )7
0 2

5
0 (12)

where x,y denote the states which belong to the ground configuration and
the contributions are summed up over these intermediate states. F2 of these
contributions describes effectively the intershell interactions via PVsoQVCFP.
It is necessary to include all possible sequences of operators that determine
the fourth-order contributions, namely

D V FMD CF 2 (13)

D F VMD CF2 (14)

V D FCF MD 2 (15)

F D V2 MD CF (16)

V F DCF MD2 (17)

F V D2 CF MD . (18)

Each contribution has the form of a product of the angular part inde-
pendent of directions in space (independent of angular momentum projec-
tion numbers), radial integrals and 3-j symbols that result from coupling of
angular momenta and from the Wigner–Eckart theorem (see in ref.12). The
part of the contribution that is independent of the direction in space is ex-
pressed by the product of reduced matrix elements, of the general form

〈 〉 〈 ′ ′ ′〉
′ ′ ′

∑ [ ] || ||[ ] [ ] || ||[ ]
,

7
1 20F O SL J SL J O S L J

SLJ S L J

〈 ′ ′ ′ 〉 ′ −[ ] || ||[ ] ( )S L J O3
5 10D ∆∆ (19)
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where each term contains the components of the operators DMD, F2 and
VCF in an appropriate order as defined in Eqs (13)–(18). The direction-
dependent coefficients in all expressions are expressed by the 3-j symbol,

[ , ] .t
t t

q p p
1

11
2

1 2

− 





 (20)

In the case of contributions (15) and (16) however, the factor at the 3-j
symbol is replaced by –[t]–1. The form of this symbol is simplified by the se-
lection rules that are valid for the particular transition 0 ↔ 0.

In the case of all contributions to the amplitude of this particular transi-
tion, due to the symmetry properties of 3-j symbols, the sum over the ap-
propriate components p1 and p2 of a given crystal field potential vanishes.
Indeed, an odd permutation of the two last columns for p1 = p2 gives a neg-
ative sign ((–1)1+t+t), while the 3-j symbol remains the same. For p1 ≠ p2, in
the summation there are always pairs of the 3-j symbols of the same value
but of the opposite sign for (p1p2) and (p2p1).

Thus, there are no contributions of fourth order to the amplitude of
0 ↔ 0 transition. This conclusion is valid for any symmetry of a crystalline
lattice. It should be mentioned that also third-order terms in the particular
case of the 0 ↔ 0 transition are vanishing. Indeed, for example the intra-
shell crystal field effect, Γ

λ 2 , is determined by the following sequence of ma-
trix elements,

〈 ↔ ↔ 〉[ ] | |[ ]7
0

5
0F DMD CF CFD PV P PV P (21)

where the arrows denote that there are also remaining terms with the posi-
tions of operators interchanged. In this particular case the expression for
the transition amplitude is also associated with the same 3-j symbol as be-
fore, and therefore these terms also vanish.

Similarly, the intershell crystal field effect represented by PVCFQVCFP also
does not contribute to the amplitude of the 0 ↔ 0 transition. In this case
the third-order contribution, Γ

λ 2
2 , has the form of product of matrix elements

Γ
λ 2
2 7

0
5

0= D x F xMD CFF D([ ] , ) ( ,[ ] ) (22)

where a new effective operator of third order, FCF, is defined as follows

F x B Bp
t

p
t

t p

p t p t

t p
CF D( ,[ ] )

( ) ( )
5

0 1

1

2

2

2 2

1 2

1 1

= ×
=

∑∑
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× 〈 → ′ 〉 〈 ′〉 〈 ′
′

∑ 4 41 2 1 2f f f| | (r l ) ||C ||l l ||C |t t

l

(t ) (t )ρ |f 〉 ×

× −
−









′




− + −∑ ( ) [ ]1 2 1 1 2

1 2

1 2λ µ

λµ

λ
λ
µ

λt t t t

p p
t t

lf f



×

× 〈 〉4 6 5
0f ff Dx U| ( )|[ ] .( )

µ
λ (23)

Comparing the tensorial structure of this new operator with those intro-
duced previously (F2, F4 and F5 in Appendix), it is clearly seen that the ra-
dial integrals and also the angular parts in all cases are very similar. How-
ever, the main difference between them is such that now the effective oper-
ator is associated with the unit tensor operator U(λ), while the previously
analyzed objects are defined by the double tensor operators acting within
the spin–orbital space. In the particular case of the 0 ↔ 0 transition, only
operator U(1) in Eq. (23) contributes to its amplitude (the intermediate state
x in the matrix element of U(λ) is identified by J = 1 due to the selection
rules for the product of matrix elements in Γ

λ 2
2 . Taking into account only

the direction-dependent part of Eq. (22) one can write

Γ
λ 2
2

1 2
1 2

1 2

1
~ .B B

t t

p pp
t

p
t

p p
∑ −









µ
(24)

The right-hand side vanishes for the same reasons as in the previous cases
discussed above.

This means that up to the fourth order there is no nonzero contributions
to the amplitude of the 0 ↔ 0 magnetic dipole transition. Thus, in general
it is found that in the case of the electric dipole 0 ↔ 0 transition there is no
borrowing intensity from the magnetic dipole transition.

1 ↔ 0 Transition

The other unusual transition that is observed in the case of Eu ion in vari-
ous hosts is 5D1 ↔ 7F0. It is the aim of present analysis to verify whether its
intensity is reinforced by the borrowing mechanism from the interactions
via VCF and Vso between the multiplets of 4f6 configuration.

Introduction of the spin–orbit interaction into the zeroth-order
Hamiltonian H0 makes it possible to obtain non-vanishing first-order
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contributions defined in Eq. (3) between the states in the intermediate
coupling scheme. In the particular case of the transition analyzed here,
the first-order contribution has the following value

DMD F D([ ] ,[ ] ) .7 5 200 10 9 570 10= − × − (25)

where the coefficients of linear combinations of wave function for the Eu3+

are taken from ref.14

In this particular case the values of the second-order (Eq. (4)) and third-
order contributions (Eq. (5)) are the following,

Γλ ( ) .≡ + =D V V D BMD CF CF MD 67950 0
2 (26)

Γλµ ( ) .≡ + =D F F D BMD MD2 2 0
226059 (27)

and they are measured in the units of a common structural parameter B0
2 .

The results presented above indicate that the second-order contribution
is of the same order of magnitude as the third one. In order to evaluate the
absolute values of various contributions one has to apply the semi-
empirical values of crystal field parameters Aq

k . In the present analysis the
values found in ref.15 for LaCl3 are used, and the structural parameters Bp

t

are obtained with the radial integrals presented in ref.12 In Table I the struc-
tural parameters evaluated in this way are collected. For the simplicity of
the preliminary analysis it is assumed that, due to the fact that all the struc-
tural parameters of even rank are of the same order of magnitude, the order
of their values is fixed for further analysis of the importance of various con-
tributions to 10–4 a.u.
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TABLE I
Crystal field parameters Ap

t and structural parameters Bp
t for Eu3+ in LaCl3 (ref.15)

t p Ap
t a, cm–1 Bp

t × 104, a.u.

2 0 178 9.6897

4 0 –304 –8.5307

6 0 –816 –5.9161

6 6 521 3.7773

a A B rp
t

p
t t= 〈 〉 4 f .



Consequently, the first-order contribution from Eq. (25) is two orders of
magnitude greater than the second- and third-order contributions. The situ-
ation is much more complex in the case of the fourth-order terms where in
addition to the variety of various terms there is also an explosion of inter-
mediate states that have to be taken into account not to mention the dou-
ble summation over the products of structural parameters.

In Table II the values are collected of fourth-order contributions deter-
mined by the sequences of operators that involve the effective operator F2,
and which are associated with the products of various structural parame-
ters. The first three columns of the numbers represent the terms defined by
Eqs (6)–(8). In the last column the total contribution is presented for the
pairs of indices t1(p1)t2(p2) that contribute to the amplitude of the 0 ↔ 1
transition. With the assumption made above that the order of magnitude
of all structural parameters is the same, it is easy to compare the results and
establish their relative importance.

From the definition of Γ
λ µ2

1 2 3, , in Eqs (6)–(8) it is seen that each term is
summed over all possible intermediate states that describe the excited states
of 4f6 configuration. In Table III ten (of 44) dominant contributions caused
by F2 are presented together with the specification of the source of the term
(the sequence of matrix elements), and also with information about the
symmetry of the intermediate states. All values presented in that Table are
associated with the structural parameters B B0

4
0
4 , as an example. It is seen

from this Table that it is rather difficult to establish the hierarchy of impor-
tant terms and to define the physical origin of the most important contri-
bution. At the same time however it is seen that the most important inter-
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TABLE II
Comparison of the fourth-order contributions determined by the effective operator F2 and
associated with the products of structural parameters Bp

t

Structural
parameters

Γ
λ µ2
1 Γ

λ µ2
2 Γ

λ µ2
3

Total

B B0
2

0
2 –320.10 –153.51 491.99 18.383

B B0
2

0
4 18.094 712.59 –308.45 422.23

B B0
4

0
4 –92.643 –15.578 130.66 22.443

B B0
4

0
6 –1961.9 3415.7 225.42 1679.26

B B0
6

0
6 –13506. 4700.7 1702.9 –7102.76

B B6
6

6
6 50891. –99638. –12741. –61488.



mediate state for the first step of borrowing intensity is 7F4. In the case of
second intermediate states there are various states, involved in the process
of gaining intensity, and among them 7F2 and excited state 7F3 are the dom-
inant. This means that the magnetic dipole transition 7F0 ↔ 5D1 is borrow-
ing the intensity from the transitions 7F2(7F3) ↔ 5D1 and in majority of
cases this is reinforced by the interaction via F2 or VCF between the initial
state 7F0 and 7F4. It should be mentioned that in general, for all the other
products of the structural parameters with various ranks, the most impor-
tant contributions are due to the terms that involve interactions between
the components of the initial state 7FJ, for various values of J, while the im-
pact due to other symmetries of the terms is negligible.

In order to find the most important contributions of fourth order, the
terms caused by the effective operators F4 and F5 (Γ

λ µ2
4 from Eq. (9) and Γ

λ µ2
5

from Eq. (10)) have to be evaluated and analyzed. These contributions asso-
ciated with certain structural parameters are collected in Table IV. In this
Table attention is directed to the symmetry of one-electron states l′ to
which the 4f electron is promoted in the excited configuration. The effec-
tive operators F4 and F5 (and also F2 in the analysis above) represent the
intershell interactions via certain perturbing operator. In particular, as
mentioned before (see also ref.12), the operator F4 represents the intershell
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TABLE III
Ten dominant contributions of the fourth-order terms determined by the effective operator
F2 and associated with the structural parameters B B0

4
0
4 for various intermediate states

Value Sequencea x y

88.14 F2VCFDMD
7F4

7F2

–86.58 VCFF2DMD
7F4

7F2

70.36 VCFDMDF2
7F4

7F3

–51.02 F2VCFDMD
7F4

5D0

39.31 F2DMDVCF
7F4

7F3

–36.50 VCFF2DMD
7F4

5D0

–35.74 DMDF2VCF
7F1

5G3

–32.80 VCFDMDF2
7F4

7F5

29.71 VCFF2DMD
7F4

5D2

21.70 F2DMDVCF
7F4

5G2

a For example F2VCFDMD ≡ 〈4f6 7F0|F2|4f6x〉 〈 4f6x|VCF|4f6y〉 〈 4f6y|DMD|4f6 5D1〉 .



interactions via crystal field potential (taken into account twice), while F5
represents the intershell interaction via crystal field potential and also the
spin–orbit interaction operator. This is why in the first column of Table IV
the values of l′ from the excited configurations 4f5n′l′ are specified. Here the
intermediate states x of Eqs (9) and (10) describe the energy levels of 4f6

ground configuration of Eu3+ ion, while the excited states of the excited
configurations 4f5n′d, 4f5n′f, 4f5n′g, for all n′, are included within the effec-
tive operators F4 and F5. The last column of Table IV presents the relative
importance of Γ

λ µ2
4 (F4) and Γ

λ µ2
5 (F5).

It is seen from Table IV that again the situation is not very clear, and it is
rather difficult to derive a definite conclusion about the importance of par-
ticular terms. The values of terms that are caused by the excitations to the
one-electron states of f symmetry, 4f5n′f, are increasing together with the
increase of the rank of the crystal field potential. At the same time, almost
for all ranks of crystal field potential the most dominant are the contribu-
tions Γ

λ µ2
5 for l′ = f; thus for these excitations the other contributions that

are due to F4 are relatively negligible. However, in the case of the excitation
to the orbitals of d and g symmetry the situation is not clear, as it is seen
from the comparison of the terms associated with the structural parameters
of odd ranks. In the case of the d excitations, the most dominant is the
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TABLE IV
Fourth-order contributions Γ

λ µ2
4 and Γ

λ µ2
5 in the units of product of structural parameters

l′ B Bp
t

p
t

1
1

2
2 Γ

λ µ2
4 a Γ

λ µ2
5 a κ p p

t t
1 2

1 2 (l′)b, %

3 B B0
2

0
2 0.7157 –2.3176 –45

B B0
2

0
4 –1.5224 14.159 –12

B B0
4

0
4 –4.1017 –29.582 12

B B0
4

0
6 38.138 518.99 7

B B0
6

0
6 138.41 4403.2 3

B B6
6

6
6 –794.43 –49133. 2

2 B B0
1

0
1 13.966 0.4476 97

B B1
1

3
3 –36.007 –20.914 63

4 B B0
1

0
1 –0.0239 –0.4390 5

B B1
1

3
3 –1.5143 –17.388 8

a Γ
λ µ2
n ≡ DMDFn + FnDMD. b κ p p

t t
1 2

1 2 (l′) = [Γ
λ µ2
4 /(Γ

λ µ2
4 + Γ

λ µ2
5 )] × 100%.



term Γ
λ µ2
4 while in the case of the g excitations, the most important is the

term Γ
λ µ2
5 . Again in deriving these conclusions it is assumed that all the

structural parameters are of the same order of magnitude. Although there is
an evidence that this assumption is correct in the case of even rank parame-
ters (see Table I), its validity is only predicted for the case of odd parame-
ters, since it is impossible to estimate them in a reliable way.

In Table V the summary of the fourth-order contributions to the ampli-
tude of magnetic dipole transition 7F0 ↔ 5D1 in Eu3+ ion in the LaCl3 host is
presented. All values collected in this Table are scaled by 104 (the values of
the structural parameters are included), and they are numbered by the pairs
of the ranks of crystal field potential. For each entry, there are three sources
of the contribution, namely F2, F4 and F5. The underlined values for B B6

6
6
6

are the largest, and they are of the same order of magnitude as second- and
third-order contributions as presented in Eqs (26) and (27). Thus the most
important terms are caused by the interactions via F2 and F5; the remaining
terms presented there are at least one order of magnitude smaller.
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TABLE V
Summary of the fourth-order contributions to the amplitude of magnetic dipole transition
5D1 ↔ 7F0 in Eu3+ in LaCl3 host; terms are caused by the effective operators F2, F4, F5 and
their values are scaled by factor 104

× 104 (tp) = 20 40 60 66

(tp) F2 0.0937 0.4222

20 F4 0.0000 –0.0001

F5 –0.0002 0.0014

40 F2 0.0022 0.1680

F4 –0.0030 0.0038

F5 –0.0004 0.0519

60 F2 –0.7105

F4 0.0138

F5 0.4404

66 F2 –6.1487

F4 0.0794

F5 –4.9132



CONCLUSIONS

The total contributions of various orders to the amplitude of the transition
7F0 ↔ 5D1 are presented in Table VI. The first-order terms describe the direct
transition between the initial and final states, and their values are modified
by terms of various orders. Second-order terms involve the interactions be-
tween the excited states of 4fN configuration via crystal field potential; this
is the borrowing mechanism from the interactions within the multiplet. At
the third order, intershell interactions via crystal field and spin–orbit inter-
action operator are taken into account. The fourth-order contributions are
determined by interactions within the multiplet via the perturbing opera-
tors and the intershell interactions via the crystal field potential (included
twice) and the spin–orbit interaction operator.

It is seen from Table VI that all higher-order contributions, although of
the same order, are two orders of magnitude smaller than the amplitude de-
fined in a standard way at the first order. The latter is evaluated with the
free ion functions in the intermediate coupling scheme. Thus, it has to be
concluded that in the particular case of the 0 ↔ 1 magnetic dipole transi-
tion the borrowing intensity mechanism does not play an important role in
the understanding of its origin and reproduction of its intensity. It is inter-
esting to recall that in ref.1 this very transition has been analyzed as electric
dipole in origin, understanding that its intensity is an effect of combina-
tion of electric and magnetic dipole radiations. That approach was based on
the alternative formulation of the Judd–Ofelt theory in which the velocity
form (instead of the length form of the standard formulation) of the elec-
tric dipole radiation operator was applied. Although the symmetry of the
host of the Eu ion was different (C2v), assuming that within a good approxi-
mation the order of the crystal field parameters is the same as in the pres-
ent analysis (~10–4), it is evidently seen from Table II of ref.1 that the contri-
bution to the transition amplitude of 0 ↔ 1, the part which is due to the
electric dipole mechanism, is of the same order of magnitude as those of
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TABLE VI
Total contributions of various orders to the amplitude of 5D1 ↔ 7F0 transition

Order Contribution

1st –9.57 × 10–2

2nd 6.80 × 10–4

3rd 2.61 × 10–4

4th –1.11 × 10–3



second-, third- and fourth-order terms of the magnetic dipole radiation. At
the same time it is two orders of magnitude smaller than the major contri-
bution of the first order, as presented in Table VI. This means that the
0 ↔ 1 transition is primarily of the magnetic dipole origin as stated by
Kushida and his collaborators.

In summary it is concluded that contributions to the magnetic dipole
transition 5D1 ↔ 7F0 are of the following relative importance

V F F V F FCF CF f f2 2 5 4≈ ≈ >( ) ( )

F F F F4 5 5 4( ) ( ) ( ) ( )d d g g> > >>

where in parentheses the symmetry of one-electron excited states is dis-
played to which the 4f electron is promoted in the excited configurations.

The possibility of the importance of the mechanisms of borrowing inten-
sity for the 5D0 ↔ 7F0 magnetic dipole transition has also been checked. The
detailed inspection of the tensorial form of various effective operators has
proved that none of the considered mechanisms reinforce this transition,
since all the contributions analyzed here vanish due to the selection rules.
Thus, at this point of the analysis the only non-zero contribution is of elec-
tric dipole origin, and it is determined by the third-order two-particle effec-
tive operators representing the perturbing influence of the crystal field po-
tential and also the electron correlation effects. Since such a description of
this unusual transition is not precise enough as discussed by Kushida, as a
next step of the investigations it is planned to formulate a model in which
three major interactions simultaneously are taken into account as perturba-
tions, namely: the crystal field potential, electron correlation effects and
spin–orbit interaction. As a consequence of the inclusion of the spin–orbit
interaction the transition amplitude will be expressed in the terms of dou-
ble tensor operators, and therefore completely new selection rules for the
non-vanishing contributions to the amplitude of the 0 ↔ 0 transition are
expected. Work along this line is in progress.

APPENDIX. EFFECTIVE OPERATORS THAT CONTRIBUTE TO THE AMPLITUDE OF
MAGNETIC DIPOLE TRANSITIONS

The third-order contributions are determined by the effective operator
which present intershell interactions via PVCFQVsoP. Using the assumptions
of the standard Judd–Ofelt theory about the energy denominators it is pos-
sible to perform the partial closure and derive the effective operator of the
following form
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F x t B rt+
p
t

tp

t
2

1 32

3
1 4 4

1
2( , ) ( ) [ ] | | ( )′ = − 〈 →− −∑ψ ρ

even

f f f 〉 〈 〉a ||C t
so f) f f( ||( )

[ ] | ( )| .( )k
t k

x W
k

p
k t1

4 46 1 6

f f f
f ff f

even 







〈 ′〉∑ ψ (A1)

In this particular case the perturbing influence of the excited configura-
tions 4fN–1n′f, for all n′, is taken into account.

The fourth-order contributions that contain the intershell interactions
are determined by two different effective operators. The operator F4 repre-
sents the interaction PVCFQVsoQVCFP and it has the following effective form

F x B Bp
t

p
t

t p

p t p t

t p

t
4

2

3
4

1

1

2

2

2 2

1 2

1 1
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( ) ( )
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=

∑∑ψ ρ f ′ → ′ 〉
′

−∑ l r l
l

t) | | ( )3 2 4ρ f

〈 ′〉 〈 ′ 〉 ′ −∑ −f f so

odd

||C l l C a l kt t

k

t( ) ( )|| || || ( ) [ ] ( )1 2 11 µ λ

λµ

λ+∑ [ ]
1
2

t t

p p

k

l t

l t

x W1 2

1 2
2

1

6 1

1

4
λ
µ

λ

µ−






 ′

′












〈f

f

f | ( k ) ( )| .λ ψff f4 6 ′〉 (A2)

In this case the intrashell interactions within the excited configurations via
the spin–orbit interaction are taken into account (QVsoQ). When the order
of physical mechanisms in the triple product is different, namely in the
case of PVCFQVCFQVSOP, the effective operator has the form

F x B Bp
t

p
t

t p

p t p t

t p

t
5

2

3
4

1

1

2

2

2 2

1 2

1 1

1( , ) (
( ) ( )

′ = 〈 →
=

∑∑ψ ρ f ′ → 〉
′

−∑ l r
l

t) | | ( )2 3 4ρ f f

〈 ′〉 〈 ′ 〉 − −f f fso

ev

||C l l C at t k( ) ( )|| || || ( ) ( ) [ ]1 2
1
21 µ

λµ

λ
en

∑∑
k

t t

p p
t t

l

k1 2

1 2

2 1 1λ
µ

λ λ
−









′





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
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
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

f f f f f

〈 ′〉4 46 1 6f ff fx W k| ( )| .( )
µ

λ ψ (A3)
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The effective operators contributing at the fourth order, F4 and F5, repre-
sent the perturbing influence of pairs of excited configurations. Namely, for
the even part of the crystal field potential the impact of 4fN–1n′f via VCF and
Vso is included. For the odd parts of the crystal field, F4 represents interac-
tions between 4fN – 4fN–1n′d, 4fN–1n′g via VCF potential. F5 with odd part of
VCF represents interactions between 4fN and 4fN–1n′d, 4fN–1n′g via VCF, and
4fN – 4fN–1n′f via Vso.

In the case of all these effective operators, the radial integrals are ex-
pressed in terms of the perturbed functions13. Therefore, in the numerical
calculations the impact due to the excitations to the one-electron states
from the complete set is taken into account.
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